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Who we are



Some housekeeping before we start

▪ This is an interactive workshop ☺ 

If you have a question, stop us / raise your hand during the talk!

▪ This course on R high performance computing is open-source & on Github

▪ https://luwidmer.github.io/fastR-website/ 

▪ Course content is licensed under CC-BY 4.0, example code under the MIT license

▪ We collect feedback on the course

▪ We will work with a web-based Posit Workbench cluster in the cloud
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https://luwidmer.github.io/fastR-website/


Learning goals

1. Be able to debug R code and identify & optimize bottlenecks

2. Basics of R parallelization on high performance compute environments

– Understand limits of achievable performance (Amdahl’s law)

– Parallelize R code on compute clusters via {clusterMQ} and {batchtools}

– Understand how to generate uncorrelated random numbers in parallel R code

– Debug remote R code in {batchtools} and {clusterMQ} jobs

3. Know how to apply this knowledge on relevant case studies

– Simulation studies, bootstrapping, cross-validation, parallel Stan models, ... 

– Your case study, if you brought one along with you ☺
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Access the high-performance 
compute environment at
<URL>

See your login note for your username & password.

Let us know if you have questions or need help!

The example code is available in the

fastR-example-code folder in your home-directory



Part I

Debugging R code and identifying & 
optimizing bottlenecks locally



Before we start: do not sacrifice correctness in 
the name of performance

The workflow should roughly be the following:

1. First of all, focus on correctness of your code before performance

→ Debugging & Testing

2. If your code is too slow, (always!) measure where it spends the most time

→ Profiling

3. With the information from step 2, optimize the bottlenecks

→ Local optimization

4. Only if the code is still too slow in step 3, go to the HPC (if possible)

→ Parallelization
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My R code is not behaving as expected... 
how to find the problem?

Overall approach we suggest:

1. If you get a non-obvious error message, use internet search

– Chances are someone has already asked about it on StackOverflow

2. Make it repeatable

– Simplify the example by removing code not needed to trigger the issue

– The {reprex} package can help you with this (also for submitting bugs to Github!)

3. Figure out where it is

– See the next four slides for some helpful commands

4. Fix it and test it ☺
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https://stackoverflow.com/questions/tagged/r?tab=Votes


Helpful commands for debugging:
browser() interactive debugger
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Location in program

Environment explorer

Values in environment g()

Call stack and line

numbers

Execute next line of code

Step into function / expression

Step out of function

Continue executing

(no stopping at next line)

Stop (drop to R console)

Try it yourself:

→ browserdemo.R

https://stat.ethz.ch/R-manual/R-devel/library/base/html/browser.html


Helpful commands for debugging: traceback(), 
rlang::last_error()and rlang::last_trace()
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Try it yourself:

→ tracebackdemo.R

Calling f() with x = "I am not numeric"
obviously errors: “Show Traceback” in RStudio or traceback() from 

base R show the call stack and code lines where the 

error occurred.

last_error() and last_trace() from {rlang} are 

more modern variants, however, they by default only 

cover rlang::abort(), not base::stop() errors. 

See rlang::global_entrace() for details.

https://stat.ethz.ch/R-manual/R-patched/library/base/html/traceback.html
https://rlang.r-lib.org/reference/last_error.html
https://rlang.r-lib.org/reference/last_error.html
https://stat.ethz.ch/R-manual/R-patched/library/base/html/traceback.html
https://rlang.r-lib.org/reference/last_error.html
https://rlang.r-lib.org/reference/last_error.html
https://rlang.r-lib.org/reference/abort.html
https://stat.ethz.ch/R-manual/R-patched/library/base/html/stop.html
https://rlang.r-lib.org/reference/global_entrace.html


Helpful commands for debugging:
options(error = recover)
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You can enter the

interactive browser() 
debugger when the

error occurs, too!

This is undone with
options(error = NULL)

Try it yourself:

→ recoverdemo.R



Advanced Debugging: R Markdown

▪ R Markdown redirects output, so if we put a browser() statement, the 

interactive console output is invisible – use sink() to stop the redirect:

▪ See Debugging with the RStudio IDE – Posit Support for details.
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Try it yourself: →

markdowndebugdemo.RmdOutput gets redirected

Output as usual 

after calling sink()

https://stat.ethz.ch/R-manual/R-devel/library/base/html/browser.html
https://stat.ethz.ch/R-manual/R-devel/library/base/html/sink.html
https://support.posit.co/hc/en-us/articles/205612627-Debugging-with-RStudio#debugging-in-r-markdown-documents


Advanced Debugging: R Markdown

▪ We can also combine the sink() function with trace_back() from {rlang} 

and recover() for a powerful combo that prints where the error occurred, 

and allows us to interactively debug the R Markdown:
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options(error = function() {
 sink()
 print(rlang::trace_back(bottom = sys.frame(-1)))
 recover()
})

Try it yourself: →

markdowndebugdemo.Rmd

https://stat.ethz.ch/R-manual/R-devel/library/base/html/sink.html
https://rlang.r-lib.org/reference/trace_back.html
https://rlang.r-lib.org/
https://stat.ethz.ch/R-manual/R-devel/library/utils/html/recover.html


Advanced Debugging: Remote Sessions

▪ Post-mortem debugging – resurrecting a session for debugging:

▪ For Shiny apps, see Debugging Shiny applications (rstudio.com)
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dump.frames()

last.dump.rda Try it yourself: → dumpdemo1/2.R

https://shiny.rstudio.com/articles/debugging.html


Questions on debugging?



My R code is slow... what can I do?
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1. Measure / “profile”:

Where is the code slow?

– Avoid the trap of prematurely optimizing the part you “think” is slow.

2. Then optimize (once you have data!).

“R is a language optimized for human performance, not computer performance”

Hadley Wickham, New York R Conference 2018 



Which parts of the code are slow?

Profiling the code can tell you! In R, this is done using the profvis package

(or in RStudio using the Profiling menu):
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library(profvis)
f <- function() {
 pause(0.5)
 for (i in seq_len(3)) {
  g()
 }
}
g <- function() {
 pause(0.5)
}
prof <- profvis({f()})
print(prof)

Try it yourself:

→ profvisdemo.R

http://rstudio.github.io/profvis/


Which parts of the code are slow?

Profiling the code can tell you! In R, this is done using the profvis package

(or in RStudio using the Profiling menu):
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library(profvis)
f <- function() {
 pause(0.5)
 for (i in seq_len(3)) {
  g()
 }
}
g <- function() {
 pause(0.5)
}
prof <- profvis({f()})
print(prof)

Try it yourself:

→ profvisdemo.R

http://rstudio.github.io/profvis/


I have found a bottleneck... what now?
1. Check for existing solutions

If the slow function is from a package, search for a faster one!

Runtime complexity (runtime as a function of data size) of different algorithms can be
wildly different – some work well on small data but take forever on large data!

Examples:

▪ For data frames, use {data.table} and base R instead of {tidyverse}
▪ dplyr::filter() in a loop is slow (but nice to read, so only optimize if needed).

If you need to filter in a loop, use base R logical indexing or {data.table} instead

▪ To read/write CSV data, use {vroom} instead of base R, {readr} or {data.table}

▪ To (de)serialize data, use qread() and qsave() from the {qs} package instead of
readRDS() and saveRDS()
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https://en.wikipedia.org/wiki/Time_complexity
https://rdatatable.gitlab.io/data.table/
https://www.tidyverse.org/
https://cran.r-project.org/package=data.table
https://cran.r-project.org/package=vroom
https://readr.tidyverse.org/
https://rdatatable.gitlab.io/data.table/
https://cran.r-project.org/package=qs


I have found a bottleneck... what now?
2. Do as little as possible...

... and compute things only once, if possible (and reasonable).

→ See the DRY (Don’t Repeat Yourself) principle

Examples:

▪ When testing for the existence of a condition over data frame rows, use

any(condition) rather than nrow(filter(x, condition)) > 0.

▪ Assemble a data frame / tibble / data table once, rather than creating it and 

appending to it over and over again.

▪ When subsetting in a data frame, don’t subset the entire data frame, only the

column needed for the computation (SELECT before FILTER).
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https://en.wikipedia.org/wiki/Don%27t_repeat_yourself


I have found a bottleneck... what now?
3. Vectorize

Specialized vectorized functions will still be substantially faster than

apply/lapply/sapply() or for loops, see for instance:

▪ rowSums(), colSums(), rowMeans(), colMeans() in base R

▪ The {matrixStats} package:

▪ anyMissing(), colQuantiles(), rowQuantiles() and many, many more

▪ The {Rfast} package: A Collection of Efficient and Extremely Fast R Functions

▪ The {collapse} package: Advanced and Fast Data Transformation
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https://cran.r-project.org/package=matrixStats
https://cran.r-project.org/package=Rfast
https://cran.r-project.org/package=collapse


Example: vectorize for loop 
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Speed-up 80x

Remember: R is an interpreted language. 

Vectorization ensures that data is operated 

on in chunks by native (C/C++) code rather 

than element by element in R code.

The R package 

{microbenchmark} is a good tool 

to benchmark given parts of 

code. It will run the same code 

chunk n times (default 100) to 

get a "good" result.

Try it yourself:

→ microbenchmarkdemo.R

https://cran.r-project.org/package=microbenchmark


How much memory am I using?
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profvis also can visualize

memory (de-)allocations! 

library(profvis)
prof <- profvis({
x <- integer()
for (i in 1:1e4) {
x <- c(x, i)

}
})
print(prof)

de-allocations (Mb)

allocations (Mb)

Garbage collection*

* R manages memory for you (you don’t have to explicitly

allocate / free memory) by garbage collection. 

If this takes a lot of time, you might be creating a lot of

short-lived objects (or in this case, copies)!

1000x size of object!

Memory

Try it yourself:

→ profvismemorydemo.R

http://rstudio.github.io/profvis/examples.html


Avoid making object copies if possible

Or, if you must make copies, copy as little as possible.

Examples: if you are

• creating a vector, pre-allocate it (e.g. x <- numeric(N)) then fill it, rather than

iteratively grow x with the c() function,

• creating a data frame, create it once from vectors rather than appending rows,

• subsetting a data frame, try subsetting only the column(s) you need for

downstream analysis (resulting in vectors rather than data frames).
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Demo: 5k bootstraps on 1k patients*
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impl_1 = function(population) {
result <- NULL
for (i in seq_len(bootstrap_n)) {

bootstrap_data_rows <- sample(
x = seq_len(nrow(population)), 
size = bootstrap_size,
replace = TRUE

)
current_bootstrap <- population[bootstrap_data_rows, ]
analysis_pop <- filter(current_bootstrap, analysis_flag == T)
current_result <- tibble(
bootstrap_index = i,
computed_output = median(analysis_pop$dummy_measurement)

)
result <- bind_rows(result, current_result)

}
return(result)

}

* Realistically, 20 seconds is okay, but in the context of this seminar, anything longer would have been 

too tedious to demo.

Try it yourself:

→ optimizebootstrap.R



Demo: 5k bootstraps on 1k patients
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impl_2 = function(population) {
result <- NULL
for (i in seq_len(bootstrap_n)) {

bootstrap_data_rows <- sample(
x = seq_len(nrow(population)), 
size = bootstrap_size,
replace = TRUE

)
current_boot <-
population[bootstrap_data_rows][(analysis_flag)]

current_result <- tibble(
bootstrap_index = i,
computed_output = median(current_boot$dummy_measurement)

)
result <- bind_rows(result, current_result)

}
return(result)

}

Subset with data.table instead of filter

Try it yourself:

→ optimizebootstrap.R



Demo: 5k bootstraps on 1k patients
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impl_3 = function(population) {
result <- list()
for (i in seq_len(bootstrap_n)) {

bootstrap_data_rows <- sample(
x = seq_len(nrow(population)), 
size = bootstrap_size,
replace = TRUE

)
current_boot <-
population[bootstrap_data_rows][(analysis_flag)]

current_result <- tibble(
bootstrap_index = i,
computed_output = median(current_boot$dummy_measurement)

)
result[[i]] <- current_result

}
return(bind_rows(result))

}

Create list of tibbles, then bind_rows

on list instead of iterative bind_rows

Try it yourself:

→ optimizebootstrap.R



Demo: 5k bootstraps on 1k patients
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impl_4 = function(population) {
computed_output <- numeric(bootstrap_n)
for (i in seq_len(bootstrap_n)) {

bootstrap_data_rows <- sample(
x = seq_len(nrow(population)), 
size = bootstrap_size,
replace = TRUE

)
current_boot <-
population[bootstrap_data_rows][(analysis_flag)]

computed_output[i] <- median(current_boot$dummy_measurement)
}
return(

tibble(
bootstrap_index = seq_len(bootstrap_n),
computed_output = computed_output

)
)

}

Create the results tibble only at the 

end from vectors (and only once)

Try it yourself:

→ optimizebootstrap.R



Demo: 5k bootstraps on 1k patients
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impl_5 = function(population) {
computed_output <- numeric(bootstrap_n)
analysis_indices <- which(population$analysis_flag)
for (i in seq_len(bootstrap_n)) {

bootstrap_data_rows <- sample(
x = seq_len(nrow(population)), 
size = bootstrap_size,
replace = TRUE

)
current_bootstrap_indices <-

bootstrap_data_rows[bootstrap_data_rows %in% analysis_indices]
computed_output[[i]] <-

median(population$dummy_measurement[current_bootstrap_indices])
}
return(

tibble(
bootstrap_index = seq_len(bootstrap_n), 
computed_output = computed_output

)
)

}

Subset the column of data needed for 

analysis only (rather than the data frame)

Try it yourself:

→ optimizebootstrap.R



Demo: 5k bootstraps on 1k patients
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Variant Change Runtime

1 (baseline) ~ 20 s

2 Subset with data.table instead of filter ~ 5.3 s

3 Create list of tibbles, then bind_rows on 

list instead of iterative bind_rows

~ 4.8 s

4 Create the results tibble only at the end 

from vectors (and only once)

~ 1.8 s

5 Subset the column of data needed for 

analysis only (rather than the data frame)

~ 200 ms

100x speedup!

Identical result!

Try it yourself: 

→ optimizebootstrap.R



Questions on optimization?



I know which part of my code is slow and 
cannot make it faster... what now?

This is the point where you should consider parallelizing on the HPC cluster:

If your time-consuming step is a loop, does the next iteration depend on the 

results of the last one? 

• If yes, parallelization will likely be more difficult 

Example: Stan within-chain parallelization, ...

• If not, you can probably run each iteration on a different CPU core on the cluster

Example: bootstrapping, cross-validation, simulation studies under replication, ...
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These cases are the focus of the next part of this seminar:

so-called «embarassingly parallel» problems ☺



Amdahl’s Law

Given code where a fraction 𝑝 can be parallelized, 

the speedup on 𝑠 processors can be calculated as

𝑆 𝑠 =
1

(1 − 𝑝) +
𝑝
𝑠

The more processors 𝑠, the faster the code 

runs. The maximum speedup is determined by the

fraction of the code that cannot be parallelized:

𝑆 ∞ =
1

1 − 𝑝

Big speedups are only possible if a large 

portion of the program can be parallelized!

→ Parallelizing is not magic.
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Rodgers, D. P. (1985). Improvements in multiprocessor system design. 

ACM SIGARCH Computer Architecture News, 13(3), 225–231. 
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Part II

R parallelization on high performance 
computing environments (HPC)



R parallelization on the HPC:
Background information

It is good to know some basics to help you get going on the HPC:

• (Rough) architecture of the system

• How to access the HPC

• What storage locations you can use

• How to start your jobs

• Fair use of the system
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Rstudio in the cloud – overview 
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Rstudio in the cloud – getting access 

▪ Username and password will be shared by the instructors

▪ Log into
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<URL>



Storage locations

/data/home/<youruser>/...

Your user home directory

/scratch/...

Fast shared temporary space (files will typically

deleted after X days without accessing them –

your files are not safe here!)

/tmp/...

Local machine temporary directory

(typically ~ a few GB, cleared at 

reboot, no executables)

/opt/R/...

Location of R installation
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HPC – Schedulers

▪ High Performance Computing environments (HPCs) typically use a scheduler to 

manage batch or interactive jobs. 

– Batch: non-interactive – Interactive: you get a console where you can type commands

– Typical examples: 

IBM Load Sharing Facility (LSF), SLURM, PBS/Torque, Altair Grid Engine

▪ The process works as follows:

– Jobs first enter a queue and will be distributed to worker nodes depending on hardware 

availability and the specified requirements

– Typically, different queues exist (e.g., for short/long jobs, jobs requiring GPUs, ...) 

▪ Schedulers can be used in conjunction with R packages such as {clustermq} and 

{batchtools}. If you have access to an HPC, typically, sensible, pre-defined 

defaults exist (only customize if needed or setting up your own).
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https://www.ibm.com/products/hpc-workload-management
https://slurm.schedmd.com/
https://adaptivecomputing.com/cherry-services/torque-resource-manager/
https://altair.com/grid-engine
https://cran.r-project.org/package=clustermq
https://cran.r-project.org/package=batchtools


HPC – Fair use

Only a very small set of restrictions exist with regards to total number of running jobs 

and resources occupied by one user. While this allows for maximum potential speedups,  

since total capacity is capped, this means that one user can potentially negatively 

impact the performance for all other users. 

Stakes are low in this training environment. At your institution, when submitting jobs, ensure 

that your resource request is meaningful and does not harm other users. BE FAIR.
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Check available resources

(this will depend on the cluster at your institution) 



Things to consider when using HPC

▪ Wait times on a HPC cluster are normal.

– Jobs are processed according to the assigned priority.

▪ SLURM commands for

– Currently-used and available CPU cores: sinfo -o "%20P %20n %10e %10m %5a %4c %20C"

– Running and pending jobs: squeue

▪ Non-interactive and interactive jobs:

– Interactive jobs have a GUI or console (à la ssh) session on a cluster node. 

– If the cluster is full and you want to start an interactive session, this can cause waiting times –

keep this in mind. Typically HPC admins configure different partitions for interactive and non-

interactive work to optimize for better user experience.
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The {clusterMQ} and {batchtools} R packages
can submit to different backends

– Your laptop (multi-process or local session)!

– Remote computers via SSH

– HPCs via a scheduler

▪ Backends can easily be substituted (often without changes to the R user code)

– Backend logic is hidden in templates

– This makes moving code to a compute cluster easy ☺

▪ {clusterMQ} and {batchtools} interface with the scheduler to submit jobs from R 

directly – no need to use bsub or sbatch (SLURM commands) in the terminal.
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Parallelizing with {clusterMQ} locally
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Changing backends is easy – e.g.: Try it yourself:

→ localclustermqdemo.R

locally debugging jobs sequentially

in the main R session

locally running with 3 R workers



Parallelizing with {clusterMQ} and {batchtools} 
on a laptop vs HPC cluster
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{clusterMQ}

options(clustermq.scheduler=)

{batchtools}

reg = makeRegistry(NA) 
reg$cluster.functions =

L
o

c
a
l

Local (main) R session: very 

useful for debugging code 

interactively

LOCAL makeClusterFunctionsInteractive()

Multiple R processes on a single 

machine (e.g., a laptop)

multiprocess makeClusterFunctionsSocket(N)

H
P

C
 C

lu
s
te

r

LSF lsf makeClusterFunctionsLSF()

SLURM slurm makeClusterFunctionsSlurm()

PBS pbs
makeClusterFunctionsTORQUE()

TORQUE Torque

Grid Engine sge makeClusterFunctionsSGE()

Changing backends is easy – reference for {clustermq} and {batchtools}: 

https://mschubert.github.io/clustermq/articles/userguide.html#configuration
https://mllg.github.io/batchtools/reference/makeRegistry.html
https://mllg.github.io/batchtools/reference/makeClusterFunctionsInteractive.html
https://mllg.github.io/batchtools/reference/makeClusterFunctionsSocket.html
https://mllg.github.io/batchtools/reference/makeClusterFunctionsLSF
https://mllg.github.io/batchtools/reference/makeClusterFunctionsSlurm.html
https://mllg.github.io/batchtools/reference/makeClusterFunctionsTORQUE.html


The {clustermq} and {batchtools} R packages
submit HPC jobs for you

▪ {clustermq} and {batchtools} have two different philosophies:

– {clustermq}: 

1. Submit one job per CPU core (or per x CPU cores that are needed for your 

program) that starts an R session and runs clustermq::worker

2. The head node (e.g., through a web-based RStudio session) then sends jobs to 

the workers & receives results, and sends new jobs as long as there are 

unfinished ones.

3. When all the clusterMQ jobs are done, shuts down workers & returns the results.
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Understanding {clustermq} basics:

Q() does the following:

1. Submit n_jobs R workers
(via scheduler)

2. Connect to the node that called
Q(), get clusterMQ jobs* & data

3. Receive & aggregate results

4. Shut down workers
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library(clustermq) 
fx = function(x) x * 2
Q(fx, x=1:6, n_jobs=3)

Michael Schubert, clustermq enables efficient parallelization of genomic analyses, Bioinformatics, 

Volume 35, Issue 21, 1 November 2019, Pages 4493–4495 and https://cran.r-project.org/package=clustermq 

* here we have 6 clusterMQ jobs, i.e., 2 clusterMQ jobs per persistent worker

«fresh» R session:

No packages loaded!

https://cran.r-project.org/package=clustermq
https://doi.org/10.1093/bioinformatics/btz284
https://doi.org/10.1093/bioinformatics/btz284
https://cran.r-project.org/package=clustermq


Understanding {clustermq} basics:

BBS go fastR Course47

library(clustermq) 
fx = function(x) x * 2
Q(fx, x=1:6, n_jobs=3)

Michael Schubert, clustermq enables efficient parallelization of genomic analyses, Bioinformatics, 

Volume 35, Issue 21, 1 November 2019, Pages 4493–4495 and https://cran.r-project.org/package=clustermq 

The R output

then looks like this*:

* Function fx slowed down with Sys.sleep for demo purposes

How to set the number of jobs?

Typically, use as many jobs as there are values for x,

up to the maximum responsibly usable on the cluster

Try it yourself:

→ clustermqdemo.R

https://cran.r-project.org/package=clustermq
https://doi.org/10.1093/bioinformatics/btz284
https://doi.org/10.1093/bioinformatics/btz284
https://cran.r-project.org/package=clustermq


The {clustermq} and {batchtools} R packages
submit batch jobs for you

▪ {clusterMQ} and {batchtools} have two different philosophies:

– {batchtools}: 

1. Save one job file per job into a shared directory (typically somewhere in /scratch)

2. Schedule one* batch job that runs R on the job file for each batchtools job

3. Each batch job saves an output file

4. Wait for all the batch jobs to complete

5. Aggregate / process results
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* by default, one batch job can execute multiple batchtools jobs through chunking

https://mllg.github.io/batchtools/reference/chunk


Understanding {batchtools} basics

1. makeRegistry() creates a folder on a 
shared disk

2. batchMap() writes jobs to that folder

3. submitJobs() submits the jobs and 
waitForJobs() waits for them to complete

4. reduceResultsList() loads the results
from disk into a list

5. removeRegistry() deletes the folder
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library(batchtools)
makeRegistry(file.dir=NA)
fx = function(x) x * 2
batchMap(fun = fx, x = 1:6)
submitJobs(); waitForJobs()
reduceResultsList()
removeRegistry()

Lang et al, (2017), batchtools: Tools for R to work on batch systems, Journal of Open Source Software, 2(10), 135. and 

https://cran.r-project.org/package=batchtools 

Try it yourself:

→ batchtoolsdemo.R

This creates a temporary registry

https://doi.org/10.21105/joss.00135
https://cran.r-project.org/package=batchtools


Understanding {batchtools} basics

1. makeRegistry() creates a folder on a 
shared disk

2. batchMap() writes jobs to that folder

3. submitJobs() submits the jobs and 
waitForJobs() waits for them to complete

4. reduceResultsList() loads the results 
from disk into a list

5. removeRegistry() deletes the folder
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library(batchtools)
makeRegistry(file.dir=NA)
fx = function(x) x * 2
batchMap(fun = fx, x = 1:6)
submitJobs(); waitForJobs()
reduceResultsList()
removeRegistry()

Lang et al, (2017), batchtools: Tools for R to work on batch systems, Journal of Open Source Software, 2(10), 135. and 

https://cran.r-project.org/package=batchtools 

Try it yourself:

→ batchtoolsdemo.R

https://doi.org/10.21105/joss.00135
https://cran.r-project.org/package=batchtools


Understanding {batchtools} basics

1. makeRegistry() creates a folder on a 
shared disk

2. batchMap() writes jobs to that folder

3. submitJobs() submits the jobs and 
waitForJobs() waits for them to complete

4. reduceResultsList() loads the results
from disk into a list

5. removeRegistry() deletes the folder
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library(batchtools)
makeRegistry(file.dir=NA)
fx = function(x) x * 2
batchMap(fun = fx, x = 1:6)
submitJobs(); waitForJobs()
reduceResultsList()
removeRegistry()

Lang et al, (2017), batchtools: Tools for R to work on batch systems, Journal of Open Source Software, 2(10), 135. and 

https://cran.r-project.org/package=batchtools 

https://doi.org/10.21105/joss.00135
https://cran.r-project.org/package=batchtools


Understanding {batchtools} basics

1. makeRegistry() creates a folder on a 
shared disk

2. batchMap() writes jobs to that folder

3. submitJobs() submits the jobs and 
waitForJobs() waits for them to complete

4. reduceResultsList() loads the results
from disk into a list

5. removeRegistry() deletes the folder
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library(batchtools)
makeRegistry(file.dir=NA)
fx = function(x) x * 2
batchMap(fun = fx, x = 1:6)
submitJobs(); waitForJobs()
reduceResultsList()
removeRegistry()

Lang et al, (2017), batchtools: Tools for R to work on batch systems, Journal of Open Source Software, 2(10), 135. and 

https://cran.r-project.org/package=batchtools 

https://doi.org/10.21105/joss.00135
https://cran.r-project.org/package=batchtools


Why is {clustermq} so much faster?
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Michael Schubert, clustermq enables efficient parallelization of genomic analyses, Bioinformatics, 

Volume 35, Issue 21, 1 November 2019, Pages 4493–4495 and https://cran.r-project.org/package=clustermq 

▪ {batchtools} saves job & results files

to network-shared storage (slow!)

– {clustermq} does not, and has load

balancing over persistent workers

➢ Much lower overhead!

▪ There is a tradeoff between speed

and stability:

▪ {batchtools} allows to restart specific

jobs that crashed (e.g., due to memory

constraints) – {clustermq} would not 

return any results / require a re-run. Figure: https://mschubert.github.io/clustermq/ 

https://doi.org/10.1093/bioinformatics/btz284
https://doi.org/10.1093/bioinformatics/btz284
https://cran.r-project.org/package=clustermq
https://cran.r-project.org/package=batchtools
https://cran.r-project.org/package=clustermq
https://mschubert.github.io/clustermq/


Configuration file locations & resource settings

Default configuration file locations:

▪ {batchtools}: location determined by batchtools::findConfFile()

▪ {clustermq}: location defined by R option: getOption("clustermq.template")

These files set the job parameters for the cluster scheduler, e.g., resources:
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Resource {clustermq} {batchtools} Our defaults

Cores cores: # ncpus: # 1 core

Wall time walltime: minutes walltime: seconds 1 hour

Memory memory: megabytes memory: megabytes 1 GB

https://mllg.github.io/batchtools/reference/findConfFile.html
https://cran.r-project.org/web/packages/clustermq/vignettes/userguide.html#options


Setting specific resource requirements for
{batchtools}            and              {clustermq}:

→Unless you know better, parallelize the outermost loop, and use 1 core per job.

▪ A subtlety with {clustermq} is to set a per-clustermq job timeout (on top of the

walltime of the R session for the cluster job scheduler; in seconds). 

– If you don’t set this, {clustermq} in the main R session may hang forever if an R 

worker crashes*! * Unless you run 0.9.1+ and compile from source with the right flag:

Sys.setenv(CLUSTERMQ_USE_SYSTEM_LIBZMQ=0); install.packages('clustermq', type='source’);
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Q(..., n_jobs = N,  
  timeout = 180,
  template = list( 
   walltime = 60, 
   memory = 3072, 
   cores = 1
))

submitJobs(...,
  resources = list( 
   walltime = 3600, 
   memory = 3072, 
   ncpus = 1,
    max.concurrent.jobs = N
))

https://mschubert.github.io/clustermq/articles/userguide.html#environments
https://mllg.github.io/batchtools/reference/submitJobs#resources


Parallelization workflow

1. Optimize your code locally

2. Run the code through clustermq (or batchtools), but using the local backend 

rather than on the cluster.

→ This allows you to locally debug (e.g., using browser())

3. Run a small (2-5 replications) test on the cluster

– Errors commonly occur here because local debugging uses the same interactive R 

session (with the same loaded packages, etc.), whereas cluster R jobs will not.

4. Once all of this works, run your full workload
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Part III

Case studies & best practices



Oncology phase I dose escalation: a delicate 
balance between sub-therapeutic & toxic dosing

▪ Volunteers are “patients ... whose cancers progressed despite standard treatments”1

– Initially: limited knowledge on toxicity: phase I trial to determine safety of new drug.

– Need to limit risk to current and future patients2 ⇒ can initially only use small cohorts.

▪ Goal: systematically increase the dose as quickly & safely as possible to determine the 

safe dose range for further study.
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1. Le Tourneau, C. et al. Dose escalation methods in phase I cancer clinical trials. J. Natl. Cancer Inst. 101, 708–720 (2009). 

2. Babb, J et al. Cancer phase I clinical trials: Efficient dose escalation with overdose control. Stat. Med. 17, 1103–1120 (1998).
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P subtherpeutic dosing

Lack of efficacy leads to death

P DLT

Serious side effects / toxicity

Dose0

Target

range



Update 
Bayesian 

model (prior, 
historical + 
trial data) 

using
{OncoBayes2}

Determine 
safe set of 
pre-defined 
dose levels

Sample a 
cohort of 

patients (3-6) 
for chosen 
dose level

Observe DLT 
events for 

cohort
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Oncology phase I Bayesian
adaptive dose escalation

Model-based escalation with small

sample sizes ⇒ busy design stage:

▪ Need to assess short- and long-term 

operating characteristics through

simulation – lots of it:

– Many different trajectories possible: 

Cohort sizes & events are sampled

from different possible scenarios

– Originally, this needed days of

compute time!
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Making the submission workload fast

Parallelisation on single node Multi-day runtime for ~10000 simulations2019

Rewrite using {batchtools} to run on HPC

1-2 hours on ~300-600 cores
Optimize {OncoBayes2}:

Merge data, skip data with 0 patients,

drop normalization of binomial
< 1 hour on ~300-600 cores

2020

2021
Compute time dominated by aggregating 

results on head-node (uses only 1 core!) Rewrite using {clusterMQ}, 

construct results on workers and bind at 

the end, run individual replicates single-

threaded (remove forking overhead)
2022 1-2 minutes on ~200 cores

~ 50x faster

~ 2x faster

~ 30x faster ~ 3000x faster

~ 200x efficiency



Typical parallel workloads follow a pattern

▪ Simulation studies under replication, bootstrapping and cross validation 

workloads all follow a similar pattern of computation: 
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Step Simulation study Bootstrapping Cross validation 

1. Preparation Definition of ground truth

«scenarios»

Prepare data Partition data into cross 

validation folds

2. Parallel computation Simulate (independent) 

trials

Resample data & perform 

analysis (independent of 

other resampled datasets) 

Perform analysis on training 

folds, evaluate on validation 

fold (independent of other 

training/validation splits)

3. Results aggregation Compute metrics, e.g., trial 

operating characteristics

Compute metrics 

(e.g., confidence intervals) 

across bootstraps

Compute performance

across data splits



Typical parallel workloads follow a pattern

▪ Simulation studies under replication, bootstrapping and cross validation 

workloads all follow a similar pattern of computation: 
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Step Simulation study Bootstrapping Cross validation 

1. Preparation Definition of ground truth 

«scenarios»

Prepare data Partition data into cross 

validation folds

2. Parallel computation Simulate (independent) 

trials

Resample data & perform 

analysis (independent of 

other resampled datasets) 

Perform analysis on training 

folds, evaluate on validation 

fold (independent of other 

training/validation splits)

3. Results aggregation Compute metrics, e.g., trial 

operating characteristics

Compute metrics 

(e.g., confidence intervals) 

across bootstraps

Compute performance

across data splits

Main R session (e.g., RStudio IDE)

R workers (e.g., via HPC jobs)

Compute metrics on R workers,

aggregate results in main R session



Dragons await: R workers need to be set up so 
they execute work as the main R session would

In particular, library locations, loaded libraries and options set in the main R 

session must also be set on the R workers on startup:

▪ If library locations are set by .libPaths(), this should be done consistently! 

▪ R Packages loaded with library() or require() must also be loaded on the 

R workers, not just in the main R session!

▪ When specifying options() such as the number of digits to display, etc., 

again, this must also be done on the R workers on startup, otherwise there will 

be inconsistencies with the main R session!

Remember this when locally debugging jobs in the main R session!
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https://stat.ethz.ch/R-manual/R-devel/library/base/html/libPaths.html
https://stat.ethz.ch/R-manual/R-devel/library/base/html/library.html
https://stat.ethz.ch/R-manual/R-devel/library/base/html/options.html


Random numbers for parallel R jobs –

▪ Each parallel job will need a pseudorandom number generator (PRNG).

▪ Can I just set.seed(i) for 𝑖 = 0,1, … , 𝑁 − 1 in each of my parallel R jobs?

– No!
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Why?

The first two jobs will use the same «random» numbers (except for one)!

→ Adjacent seeds do not guarantee uncorrelated PRNG streams

how not to do it



Random numbers for parallel R jobs –
a better way

1. Set the seed once in the main job via set.seed

2. Derive uncorrelated random number streams that are

guaranteed to not overlap for each parallel job

– E.g., L'Ecuyer’s Random Number Generator (RNG) in the

parallel package is designed for this. 

Each ‘stream’ is a subsequence of the period of length 2127

by construction! R example for s1 and s2 below:
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Problem: Solution:

For an overview of best practices (ADEMP) and common pitfalls, see

Morris et al (2019). Using simulation studies to evaluate statistical methods. SIM, 38(11), 2074–2102. 

library(parallel)
RNGkind("L'Ecuyer-CMRG")
set.seed(384634)
s1 <- nextRNGStream(.Random.seed) 
s2 <- nextRNGStream(s1)

RNGkind("L'Ecuyer-CMRG")
.Random.seed <<- s1

RNGkind("L'Ecuyer-CMRG")
.Random.seed <<- s2

Job 1

Job 2

Uncontrolled 

parallel runs

Stream 

parallel runs

https://stat.ethz.ch/R-manual/R-patched/library/parallel/html/RngStream.html
https://doi.org/10.1002/sim.8086
https://doi.org/10.1002/sim.8086


We provide some template code with 
“batteries included”, in particular:

▪ .libPaths() and options() will be transferred from the main R session to

the R workers

▪ They also load all the packages in load_packages.R consistently both in the

main R session and on the R workers on the HPC (only once per HPC job on 

worker startup, not for each {clustermq} job).

▪ The R pseudorandom number generator is set up to generate uncorrelated

random numbers between clustermq jobs.

▪ Options are provided to first locally test and debug single jobs before firing off a 

lot of jobs to the cluster
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Template for more complex workloads

Template structure:

main.R: Main file, defines what to run and how many replications / bootstraps  

cluster_engine.R: 

▪ Provides infrastructure to aggregate results fast (also into a data frame)

▪ Wraps clustermq to provide additional features (next slide) 

load_packages.R: Defines which packages to load (and .libPaths if needed)

simulate_trial.R / bootstrap.R / cv.R: Code for actual workload
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Debugging remote R jobs

▪ If a remote job fails, the templates

provide a call stack on top of the clustermq

error to help you locate the issue:

▪ The run_batch function in cluster_engine.R supplies two arguments to

assist in debugging by running an offending job locally instead (so you can

e.g., use browser() and investigate):

– test_single_job_index = c(11,12)
→ Use this to test single jobs (e.g. if job_id 11 and 12 crashes, set this to c(11,12))  

– test_single_job_per_experiment = FALSE
→ Use TRUE to test 1 replication per experiment
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https://gitlabce.apps.dit-prdocp.novartis.net/AEA/r-hpce-templates/-/blob/main/clustermq-replication-study/cluster_engine.R


Your own case study
<URL>

Let us know if you have questions or 
need help!

You can also try the example codes in case you don’t have a case study with you.

Available in the fastR-example-code folder of your home-directory



Discussion / Presentation 
of Case Studies



What if my workload does not parallelize?

E.g., we wrote our own custom MCMC sampler in R, and it is just too slow even 

though we already optimized the R code as far as we could. Now what?

Since this is typically* a sequential workload, doing this directly in R might just be too 

slow. → Calling C++ code from R is not too difficult: check out {Rcpp} and {inline}! 

Some other helpful packages when dealing with C++ code in R: 

▪ {RcppArmadillo} and {RcppEigen} for linear algebra, 

▪ {RcppParallel} and {RcppThread} for parallelization in C++

* Stan and {brms} can do within-chain-parallelization, see the relevant {brms} vignette
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https://cran.r-project.org/package=Rcpp
https://cran.r-project.org/package=inline
https://cran.r-project.org/package=RcppArmadillo
https://cran.r-project.org/package=RcppEigen
https://cran.r-project.org/package=RcppParallel
https://cran.r-project.org/package=RcppThread
https://cran.r-project.org/web/packages/brms/vignettes/brms_threading.html


If you need to build an entire high-performance 
data and/or simulation pipeline: {targets} 

Beyond the scope of this introductory course – check out the {targets} package, 

Will Landau’s excellent R/Pharma 2023 workshop and related packages:

▪ {nanonext}: implements the NNG protocol (successor to zeroMQ)

▪ {mirai}: runs work asynchronously via {nanonext}

▪ {crew} (and {crew.cluster}): distributed launcher (for compute clusters) using

{mirai}, backend for {targets}

▪ {targets} can be used to build entire data / simulation pipelines 

(If you are a Linux/Unix person, think “make” for R)

▪ {tarchetypes} makes defining common {targets} pipelines easier

▪ {gittargets}, {jagstargets}, ...
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https://wlandau.github.io/rpharma2023/
https://cran.r-project.org/package=nanonext
https://cran.r-project.org/package=mirai
https://cran.r-project.org/package=nanonext
https://cran.r-project.org/package=crew
https://cran.r-project.org/package=crew.cluster
https://cran.r-project.org/package=mirai
https://cran.r-project.org/package=targets
https://cran.r-project.org/package=targets
https://cran.r-project.org/package=tarchetypes
https://cran.r-project.org/package=targets
https://cran.r-project.org/package=gittargets
https://cran.r-project.org/package=jagstargets


Summary of resources & further reading

All course material (including these slides) is available online: 

https://luwidmer.github.io/fastR-website/ 

Key papers:
▪ Morris et al (2019). Using simulation studies to evaluate statistical methods. SIM.

▪ Schubert (2019), clustermq enables efficient parallelization of genomic analyses, Bioinformatics.

▪ Lang et al (2017), batchtools: Tools for R to work on batch systems, JOSS.

 Further example for use of {clustermq}
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https://luwidmer.github.io/fastR-website/
https://doi.org/10.1002/sim.8086
https://doi.org/10.1093/bioinformatics/btz284
https://doi.org/10.21105/joss.00135
https://michaelmayer.quarto.pub/clustermq/example.html


Thank you for participating!

Please take 5 minutes to fill out a brief feedback survey about this seminar. 

Thank you for joining today and for sharing your thoughts!

<Feedback Form Link>

Feel free to reach out to us if you have additional questions or suggestions:

lukas_andreas.widmer@novartis.com

michael.mayer@posit.co
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