
Go fastR – how to make R code
fast(er) and run it on high performance
compute (HPC) clusters

Lukas A. Widmer, Novartis Pharma AG
Michael Mayer, Posit PBC

Global Drug Development

Advanced Exploratory Analytics

Next Generation BBS Training Day

6th of December, 2023

Michael Mayer, PhD

Posit

Scientist by training turned IT and now solutions engineer

Lukas A. Widmer, Dr. sc. ETH Zürich

Novartis

Computer Scientist / Computational Biologist turned

Statistical Consultant

BBS go fastR Course2

Who we are

Some housekeeping before we start

▪ This is an interactive workshop ☺

If you have a question, stop us / raise your hand during the talk!

▪ This course on R high performance computing is open-source & on Github

▪ https://luwidmer.github.io/fastR-website/

▪ Course content is licensed under CC-BY 4.0, example code under the MIT license

▪ We collect feedback on the course

▪ We will work with a web-based Posit Workbench cluster in the cloud

BBS go fastR Course3

https://luwidmer.github.io/fastR-website/

Learning goals

1. Be able to debug R code and identify & optimize bottlenecks

2. Basics of R parallelization on high performance compute environments

– Understand limits of achievable performance (Amdahl’s law)

– Parallelize R code on compute clusters via {clusterMQ} and {batchtools}

– Understand how to generate uncorrelated random numbers in parallel R code

– Debug remote R code in {batchtools} and {clusterMQ} jobs

3. Know how to apply this knowledge on relevant case studies

– Simulation studies, bootstrapping, cross-validation, parallel Stan models, ...

– Your case study, if you brought one along with you ☺

BBS go fastR Course4

Access the high-performance
compute environment at
<URL>

See your login note for your username & password.

Let us know if you have questions or need help!

The example code is available in the

fastR-example-code folder in your home-directory

Part I

Debugging R code and identifying &
optimizing bottlenecks locally

Before we start: do not sacrifice correctness in
the name of performance

The workflow should roughly be the following:

1. First of all, focus on correctness of your code before performance

→ Debugging & Testing

2. If your code is too slow, (always!) measure where it spends the most time

→ Profiling

3. With the information from step 2, optimize the bottlenecks

→ Local optimization

4. Only if the code is still too slow in step 3, go to the HPC (if possible)

→ Parallelization

BBS go fastR Course7

My R code is not behaving as expected...
how to find the problem?

Overall approach we suggest:

1. If you get a non-obvious error message, use internet search

– Chances are someone has already asked about it on StackOverflow

2. Make it repeatable

– Simplify the example by removing code not needed to trigger the issue

– The {reprex} package can help you with this (also for submitting bugs to Github!)

3. Figure out where it is

– See the next four slides for some helpful commands

4. Fix it and test it ☺

BBS go fastR Course8

https://stackoverflow.com/questions/tagged/r?tab=Votes

Helpful commands for debugging:
browser() interactive debugger

BBS go fastR Course9

Location in program

Environment explorer

Values in environment g()

Call stack and line

numbers

Execute next line of code

Step into function / expression

Step out of function

Continue executing

(no stopping at next line)

Stop (drop to R console)

Try it yourself:

→ browserdemo.R

https://stat.ethz.ch/R-manual/R-devel/library/base/html/browser.html

Helpful commands for debugging: traceback(),
rlang::last_error()and rlang::last_trace()

BBS go fastR Course10

Try it yourself:

→ tracebackdemo.R

Calling f() with x = "I am not numeric"
obviously errors: “Show Traceback” in RStudio or traceback() from

base R show the call stack and code lines where the

error occurred.

last_error() and last_trace() from {rlang} are

more modern variants, however, they by default only

cover rlang::abort(), not base::stop() errors.

See rlang::global_entrace() for details.

https://stat.ethz.ch/R-manual/R-patched/library/base/html/traceback.html
https://rlang.r-lib.org/reference/last_error.html
https://rlang.r-lib.org/reference/last_error.html
https://stat.ethz.ch/R-manual/R-patched/library/base/html/traceback.html
https://rlang.r-lib.org/reference/last_error.html
https://rlang.r-lib.org/reference/last_error.html
https://rlang.r-lib.org/reference/abort.html
https://stat.ethz.ch/R-manual/R-patched/library/base/html/stop.html
https://rlang.r-lib.org/reference/global_entrace.html

Helpful commands for debugging:
options(error = recover)

BBS go fastR Course11

You can enter the

interactive browser()
debugger when the

error occurs, too!

This is undone with
options(error = NULL)

Try it yourself:

→ recoverdemo.R

Advanced Debugging: R Markdown

▪ R Markdown redirects output, so if we put a browser() statement, the

interactive console output is invisible – use sink() to stop the redirect:

▪ See Debugging with the RStudio IDE – Posit Support for details.

BBS go fastR Course12

Try it yourself: →

markdowndebugdemo.RmdOutput gets redirected

Output as usual

after calling sink()

https://stat.ethz.ch/R-manual/R-devel/library/base/html/browser.html
https://stat.ethz.ch/R-manual/R-devel/library/base/html/sink.html
https://support.posit.co/hc/en-us/articles/205612627-Debugging-with-RStudio#debugging-in-r-markdown-documents

Advanced Debugging: R Markdown

▪ We can also combine the sink() function with trace_back() from {rlang}

and recover() for a powerful combo that prints where the error occurred,

and allows us to interactively debug the R Markdown:

BBS go fastR Course13

options(error = function() {
 sink()
 print(rlang::trace_back(bottom = sys.frame(-1)))
 recover()
})

Try it yourself: →

markdowndebugdemo.Rmd

https://stat.ethz.ch/R-manual/R-devel/library/base/html/sink.html
https://rlang.r-lib.org/reference/trace_back.html
https://rlang.r-lib.org/
https://stat.ethz.ch/R-manual/R-devel/library/utils/html/recover.html

Advanced Debugging: Remote Sessions

▪ Post-mortem debugging – resurrecting a session for debugging:

▪ For Shiny apps, see Debugging Shiny applications (rstudio.com)

BBS go fastR Course14

dump.frames()

last.dump.rda Try it yourself: → dumpdemo1/2.R

https://shiny.rstudio.com/articles/debugging.html

Questions on debugging?

My R code is slow... what can I do?

BBS go fastR Course16

1. Measure / “profile”:

Where is the code slow?

– Avoid the trap of prematurely optimizing the part you “think” is slow.

2. Then optimize (once you have data!).

“R is a language optimized for human performance, not computer performance”

Hadley Wickham, New York R Conference 2018

Which parts of the code are slow?

Profiling the code can tell you! In R, this is done using the profvis package

(or in RStudio using the Profiling menu):

BBS go fastR Course17

library(profvis)
f <- function() {
 pause(0.5)
 for (i in seq_len(3)) {
 g()
 }
}
g <- function() {
 pause(0.5)
}
prof <- profvis({f()})
print(prof)

Try it yourself:

→ profvisdemo.R

http://rstudio.github.io/profvis/

Which parts of the code are slow?

Profiling the code can tell you! In R, this is done using the profvis package

(or in RStudio using the Profiling menu):

BBS go fastR Course18

library(profvis)
f <- function() {
 pause(0.5)
 for (i in seq_len(3)) {
 g()
 }
}
g <- function() {
 pause(0.5)
}
prof <- profvis({f()})
print(prof)

Try it yourself:

→ profvisdemo.R

http://rstudio.github.io/profvis/

I have found a bottleneck... what now?
1. Check for existing solutions

If the slow function is from a package, search for a faster one!

Runtime complexity (runtime as a function of data size) of different algorithms can be
wildly different – some work well on small data but take forever on large data!

Examples:

▪ For data frames, use {data.table} and base R instead of {tidyverse}
▪ dplyr::filter() in a loop is slow (but nice to read, so only optimize if needed).

If you need to filter in a loop, use base R logical indexing or {data.table} instead

▪ To read/write CSV data, use {vroom} instead of base R, {readr} or {data.table}

▪ To (de)serialize data, use qread() and qsave() from the {qs} package instead of
readRDS() and saveRDS()

BBS go fastR Course19

https://en.wikipedia.org/wiki/Time_complexity
https://rdatatable.gitlab.io/data.table/
https://www.tidyverse.org/
https://cran.r-project.org/package=data.table
https://cran.r-project.org/package=vroom
https://readr.tidyverse.org/
https://rdatatable.gitlab.io/data.table/
https://cran.r-project.org/package=qs

I have found a bottleneck... what now?
2. Do as little as possible...

... and compute things only once, if possible (and reasonable).

→ See the DRY (Don’t Repeat Yourself) principle

Examples:

▪ When testing for the existence of a condition over data frame rows, use

any(condition) rather than nrow(filter(x, condition)) > 0.

▪ Assemble a data frame / tibble / data table once, rather than creating it and

appending to it over and over again.

▪ When subsetting in a data frame, don’t subset the entire data frame, only the

column needed for the computation (SELECT before FILTER).

BBS go fastR Course20

https://en.wikipedia.org/wiki/Don%27t_repeat_yourself

I have found a bottleneck... what now?
3. Vectorize

Specialized vectorized functions will still be substantially faster than

apply/lapply/sapply() or for loops, see for instance:

▪ rowSums(), colSums(), rowMeans(), colMeans() in base R

▪ The {matrixStats} package:

▪ anyMissing(), colQuantiles(), rowQuantiles() and many, many more

▪ The {Rfast} package: A Collection of Efficient and Extremely Fast R Functions

▪ The {collapse} package: Advanced and Fast Data Transformation

BBS go fastR Course21

https://cran.r-project.org/package=matrixStats
https://cran.r-project.org/package=Rfast
https://cran.r-project.org/package=collapse

Example: vectorize for loop

BBS go fastR Course22

Speed-up 80x

Remember: R is an interpreted language.

Vectorization ensures that data is operated

on in chunks by native (C/C++) code rather

than element by element in R code.

The R package

{microbenchmark} is a good tool

to benchmark given parts of

code. It will run the same code

chunk n times (default 100) to

get a "good" result.

Try it yourself:

→ microbenchmarkdemo.R

https://cran.r-project.org/package=microbenchmark

How much memory am I using?

BBS go fastR Course23

profvis also can visualize

memory (de-)allocations!

library(profvis)
prof <- profvis({
x <- integer()
for (i in 1:1e4) {
x <- c(x, i)

}
})
print(prof)

de-allocations (Mb)

allocations (Mb)

Garbage collection*

* R manages memory for you (you don’t have to explicitly

allocate / free memory) by garbage collection.

If this takes a lot of time, you might be creating a lot of

short-lived objects (or in this case, copies)!

1000x size of object!

Memory

Try it yourself:

→ profvismemorydemo.R

http://rstudio.github.io/profvis/examples.html

Avoid making object copies if possible

Or, if you must make copies, copy as little as possible.

Examples: if you are

• creating a vector, pre-allocate it (e.g. x <- numeric(N)) then fill it, rather than

iteratively grow x with the c() function,

• creating a data frame, create it once from vectors rather than appending rows,

• subsetting a data frame, try subsetting only the column(s) you need for

downstream analysis (resulting in vectors rather than data frames).

BBS go fastR Course24

Demo: 5k bootstraps on 1k patients*

BBS go fastR Course25

impl_1 = function(population) {
result <- NULL
for (i in seq_len(bootstrap_n)) {

bootstrap_data_rows <- sample(
x = seq_len(nrow(population)),
size = bootstrap_size,
replace = TRUE

)
current_bootstrap <- population[bootstrap_data_rows,]
analysis_pop <- filter(current_bootstrap, analysis_flag == T)
current_result <- tibble(
bootstrap_index = i,
computed_output = median(analysis_pop$dummy_measurement)

)
result <- bind_rows(result, current_result)

}
return(result)

}

* Realistically, 20 seconds is okay, but in the context of this seminar, anything longer would have been

too tedious to demo.

Try it yourself:

→ optimizebootstrap.R

Demo: 5k bootstraps on 1k patients

BBS go fastR Course26

impl_2 = function(population) {
result <- NULL
for (i in seq_len(bootstrap_n)) {

bootstrap_data_rows <- sample(
x = seq_len(nrow(population)),
size = bootstrap_size,
replace = TRUE

)
current_boot <-
population[bootstrap_data_rows][(analysis_flag)]

current_result <- tibble(
bootstrap_index = i,
computed_output = median(current_boot$dummy_measurement)

)
result <- bind_rows(result, current_result)

}
return(result)

}

Subset with data.table instead of filter

Try it yourself:

→ optimizebootstrap.R

Demo: 5k bootstraps on 1k patients

BBS go fastR Course27

impl_3 = function(population) {
result <- list()
for (i in seq_len(bootstrap_n)) {

bootstrap_data_rows <- sample(
x = seq_len(nrow(population)),
size = bootstrap_size,
replace = TRUE

)
current_boot <-
population[bootstrap_data_rows][(analysis_flag)]

current_result <- tibble(
bootstrap_index = i,
computed_output = median(current_boot$dummy_measurement)

)
result[[i]] <- current_result

}
return(bind_rows(result))

}

Create list of tibbles, then bind_rows

on list instead of iterative bind_rows

Try it yourself:

→ optimizebootstrap.R

Demo: 5k bootstraps on 1k patients

BBS go fastR Course28

impl_4 = function(population) {
computed_output <- numeric(bootstrap_n)
for (i in seq_len(bootstrap_n)) {

bootstrap_data_rows <- sample(
x = seq_len(nrow(population)),
size = bootstrap_size,
replace = TRUE

)
current_boot <-
population[bootstrap_data_rows][(analysis_flag)]

computed_output[i] <- median(current_boot$dummy_measurement)
}
return(

tibble(
bootstrap_index = seq_len(bootstrap_n),
computed_output = computed_output

)
)

}

Create the results tibble only at the

end from vectors (and only once)

Try it yourself:

→ optimizebootstrap.R

Demo: 5k bootstraps on 1k patients

BBS go fastR Course29

impl_5 = function(population) {
computed_output <- numeric(bootstrap_n)
analysis_indices <- which(population$analysis_flag)
for (i in seq_len(bootstrap_n)) {

bootstrap_data_rows <- sample(
x = seq_len(nrow(population)),
size = bootstrap_size,
replace = TRUE

)
current_bootstrap_indices <-

bootstrap_data_rows[bootstrap_data_rows %in% analysis_indices]
computed_output[[i]] <-

median(population$dummy_measurement[current_bootstrap_indices])
}
return(

tibble(
bootstrap_index = seq_len(bootstrap_n),
computed_output = computed_output

)
)

}

Subset the column of data needed for

analysis only (rather than the data frame)

Try it yourself:

→ optimizebootstrap.R

Demo: 5k bootstraps on 1k patients

BBS go fastR Course30

Variant Change Runtime

1 (baseline) ~ 20 s

2 Subset with data.table instead of filter ~ 5.3 s

3 Create list of tibbles, then bind_rows on

list instead of iterative bind_rows

~ 4.8 s

4 Create the results tibble only at the end

from vectors (and only once)

~ 1.8 s

5 Subset the column of data needed for

analysis only (rather than the data frame)

~ 200 ms

100x speedup!

Identical result!

Try it yourself:

→ optimizebootstrap.R

Questions on optimization?

I know which part of my code is slow and
cannot make it faster... what now?

This is the point where you should consider parallelizing on the HPC cluster:

If your time-consuming step is a loop, does the next iteration depend on the

results of the last one?

• If yes, parallelization will likely be more difficult

Example: Stan within-chain parallelization, ...

• If not, you can probably run each iteration on a different CPU core on the cluster

Example: bootstrapping, cross-validation, simulation studies under replication, ...

BBS go fastR Course32

These cases are the focus of the next part of this seminar:

so-called «embarassingly parallel» problems ☺

Amdahl’s Law

Given code where a fraction 𝑝 can be parallelized,

the speedup on 𝑠 processors can be calculated as

𝑆 𝑠 =
1

(1 − 𝑝) +
𝑝
𝑠

The more processors 𝑠, the faster the code

runs. The maximum speedup is determined by the

fraction of the code that cannot be parallelized:

𝑆 ∞ =
1

1 − 𝑝

Big speedups are only possible if a large

portion of the program can be parallelized!

→ Parallelizing is not magic.

BBS go fastR Course33

Rodgers, D. P. (1985). Improvements in multiprocessor system design.

ACM SIGARCH Computer Architecture News, 13(3), 225–231.

0

2

4

6

8

10

12

14

16

18

20

1 2 4 8

1
6

3
2

6
4

1
2
8

2
5
6

5
1
2

1
0
2
4

2
0
4
8

S
p

e
e

d
u

p
 S

Number of processor cores s

95%

90%

75%

50%

https://doi.org/10.1145/327070.327215
https://doi.org/10.1145/327070.327215
https://doi.org/10.1145/327070.327215
https://doi.org/10.1145/327070.327215

Part II

R parallelization on high performance
computing environments (HPC)

R parallelization on the HPC:
Background information

It is good to know some basics to help you get going on the HPC:

• (Rough) architecture of the system

• How to access the HPC

• What storage locations you can use

• How to start your jobs

• Fair use of the system

BBS go fastR Course35

Rstudio in the cloud – overview

BBS go fastR Course36

Rstudio in the cloud – getting access

▪ Username and password will be shared by the instructors

▪ Log into

37 BBS go fastR Course

<URL>

Storage locations

/data/home/<youruser>/...

Your user home directory

/scratch/...

Fast shared temporary space (files will typically

deleted after X days without accessing them –

your files are not safe here!)

/tmp/...

Local machine temporary directory

(typically ~ a few GB, cleared at

reboot, no executables)

/opt/R/...

Location of R installation

BBS go fastR Course38

HPC – Schedulers

▪ High Performance Computing environments (HPCs) typically use a scheduler to

manage batch or interactive jobs.

– Batch: non-interactive – Interactive: you get a console where you can type commands

– Typical examples:

IBM Load Sharing Facility (LSF), SLURM, PBS/Torque, Altair Grid Engine

▪ The process works as follows:

– Jobs first enter a queue and will be distributed to worker nodes depending on hardware

availability and the specified requirements

– Typically, different queues exist (e.g., for short/long jobs, jobs requiring GPUs, ...)

▪ Schedulers can be used in conjunction with R packages such as {clustermq} and

{batchtools}. If you have access to an HPC, typically, sensible, pre-defined

defaults exist (only customize if needed or setting up your own).

39 BBS go fastR Course

https://www.ibm.com/products/hpc-workload-management
https://slurm.schedmd.com/
https://adaptivecomputing.com/cherry-services/torque-resource-manager/
https://altair.com/grid-engine
https://cran.r-project.org/package=clustermq
https://cran.r-project.org/package=batchtools

HPC – Fair use

Only a very small set of restrictions exist with regards to total number of running jobs

and resources occupied by one user. While this allows for maximum potential speedups,

since total capacity is capped, this means that one user can potentially negatively

impact the performance for all other users.

Stakes are low in this training environment. At your institution, when submitting jobs, ensure

that your resource request is meaningful and does not harm other users. BE FAIR.

40 BBS go fastR Course

Check available resources

(this will depend on the cluster at your institution)

Things to consider when using HPC

▪ Wait times on a HPC cluster are normal.

– Jobs are processed according to the assigned priority.

▪ SLURM commands for

– Currently-used and available CPU cores: sinfo -o "%20P %20n %10e %10m %5a %4c %20C"

– Running and pending jobs: squeue

▪ Non-interactive and interactive jobs:

– Interactive jobs have a GUI or console (à la ssh) session on a cluster node.

– If the cluster is full and you want to start an interactive session, this can cause waiting times –

keep this in mind. Typically HPC admins configure different partitions for interactive and non-

interactive work to optimize for better user experience.

BBS go fastR Course41

The {clusterMQ} and {batchtools} R packages
can submit to different backends

– Your laptop (multi-process or local session)!

– Remote computers via SSH

– HPCs via a scheduler

▪ Backends can easily be substituted (often without changes to the R user code)

– Backend logic is hidden in templates

– This makes moving code to a compute cluster easy ☺

▪ {clusterMQ} and {batchtools} interface with the scheduler to submit jobs from R

directly – no need to use bsub or sbatch (SLURM commands) in the terminal.

BBS go fastR Course42

Parallelizing with {clusterMQ} locally

BBS go fastR Course43

Changing backends is easy – e.g.: Try it yourself:

→ localclustermqdemo.R

locally debugging jobs sequentially

in the main R session

locally running with 3 R workers

Parallelizing with {clusterMQ} and {batchtools}
on a laptop vs HPC cluster

BBS go fastR Course44

{clusterMQ}

options(clustermq.scheduler=)

{batchtools}

reg = makeRegistry(NA)
reg$cluster.functions =

L
o

c
a
l

Local (main) R session: very

useful for debugging code

interactively

LOCAL makeClusterFunctionsInteractive()

Multiple R processes on a single

machine (e.g., a laptop)

multiprocess makeClusterFunctionsSocket(N)

H
P

C
 C

lu
s
te

r

LSF lsf makeClusterFunctionsLSF()

SLURM slurm makeClusterFunctionsSlurm()

PBS pbs
makeClusterFunctionsTORQUE()

TORQUE Torque

Grid Engine sge makeClusterFunctionsSGE()

Changing backends is easy – reference for {clustermq} and {batchtools}:

https://mschubert.github.io/clustermq/articles/userguide.html#configuration
https://mllg.github.io/batchtools/reference/makeRegistry.html
https://mllg.github.io/batchtools/reference/makeClusterFunctionsInteractive.html
https://mllg.github.io/batchtools/reference/makeClusterFunctionsSocket.html
https://mllg.github.io/batchtools/reference/makeClusterFunctionsLSF
https://mllg.github.io/batchtools/reference/makeClusterFunctionsSlurm.html
https://mllg.github.io/batchtools/reference/makeClusterFunctionsTORQUE.html

The {clustermq} and {batchtools} R packages
submit HPC jobs for you

▪ {clustermq} and {batchtools} have two different philosophies:

– {clustermq}:

1. Submit one job per CPU core (or per x CPU cores that are needed for your

program) that starts an R session and runs clustermq::worker

2. The head node (e.g., through a web-based RStudio session) then sends jobs to

the workers & receives results, and sends new jobs as long as there are

unfinished ones.

3. When all the clusterMQ jobs are done, shuts down workers & returns the results.

BBS go fastR Course45

Understanding {clustermq} basics:

Q() does the following:

1. Submit n_jobs R workers
(via scheduler)

2. Connect to the node that called
Q(), get clusterMQ jobs* & data

3. Receive & aggregate results

4. Shut down workers

BBS go fastR Course46

library(clustermq)
fx = function(x) x * 2
Q(fx, x=1:6, n_jobs=3)

Michael Schubert, clustermq enables efficient parallelization of genomic analyses, Bioinformatics,

Volume 35, Issue 21, 1 November 2019, Pages 4493–4495 and https://cran.r-project.org/package=clustermq

* here we have 6 clusterMQ jobs, i.e., 2 clusterMQ jobs per persistent worker

«fresh» R session:

No packages loaded!

https://cran.r-project.org/package=clustermq
https://doi.org/10.1093/bioinformatics/btz284
https://doi.org/10.1093/bioinformatics/btz284
https://cran.r-project.org/package=clustermq

Understanding {clustermq} basics:

BBS go fastR Course47

library(clustermq)
fx = function(x) x * 2
Q(fx, x=1:6, n_jobs=3)

Michael Schubert, clustermq enables efficient parallelization of genomic analyses, Bioinformatics,

Volume 35, Issue 21, 1 November 2019, Pages 4493–4495 and https://cran.r-project.org/package=clustermq

The R output

then looks like this*:

* Function fx slowed down with Sys.sleep for demo purposes

How to set the number of jobs?

Typically, use as many jobs as there are values for x,

up to the maximum responsibly usable on the cluster

Try it yourself:

→ clustermqdemo.R

https://cran.r-project.org/package=clustermq
https://doi.org/10.1093/bioinformatics/btz284
https://doi.org/10.1093/bioinformatics/btz284
https://cran.r-project.org/package=clustermq

The {clustermq} and {batchtools} R packages
submit batch jobs for you

▪ {clusterMQ} and {batchtools} have two different philosophies:

– {batchtools}:

1. Save one job file per job into a shared directory (typically somewhere in /scratch)

2. Schedule one* batch job that runs R on the job file for each batchtools job

3. Each batch job saves an output file

4. Wait for all the batch jobs to complete

5. Aggregate / process results

BBS go fastR Course48

* by default, one batch job can execute multiple batchtools jobs through chunking

https://mllg.github.io/batchtools/reference/chunk

Understanding {batchtools} basics

1. makeRegistry() creates a folder on a
shared disk

2. batchMap() writes jobs to that folder

3. submitJobs() submits the jobs and
waitForJobs() waits for them to complete

4. reduceResultsList() loads the results
from disk into a list

5. removeRegistry() deletes the folder

BBS go fastR Course49

library(batchtools)
makeRegistry(file.dir=NA)
fx = function(x) x * 2
batchMap(fun = fx, x = 1:6)
submitJobs(); waitForJobs()
reduceResultsList()
removeRegistry()

Lang et al, (2017), batchtools: Tools for R to work on batch systems, Journal of Open Source Software, 2(10), 135. and

https://cran.r-project.org/package=batchtools

Try it yourself:

→ batchtoolsdemo.R

This creates a temporary registry

https://doi.org/10.21105/joss.00135
https://cran.r-project.org/package=batchtools

Understanding {batchtools} basics

1. makeRegistry() creates a folder on a
shared disk

2. batchMap() writes jobs to that folder

3. submitJobs() submits the jobs and
waitForJobs() waits for them to complete

4. reduceResultsList() loads the results
from disk into a list

5. removeRegistry() deletes the folder

BBS go fastR Course50

library(batchtools)
makeRegistry(file.dir=NA)
fx = function(x) x * 2
batchMap(fun = fx, x = 1:6)
submitJobs(); waitForJobs()
reduceResultsList()
removeRegistry()

Lang et al, (2017), batchtools: Tools for R to work on batch systems, Journal of Open Source Software, 2(10), 135. and

https://cran.r-project.org/package=batchtools

Try it yourself:

→ batchtoolsdemo.R

https://doi.org/10.21105/joss.00135
https://cran.r-project.org/package=batchtools

Understanding {batchtools} basics

1. makeRegistry() creates a folder on a
shared disk

2. batchMap() writes jobs to that folder

3. submitJobs() submits the jobs and
waitForJobs() waits for them to complete

4. reduceResultsList() loads the results
from disk into a list

5. removeRegistry() deletes the folder

BBS go fastR Course51

library(batchtools)
makeRegistry(file.dir=NA)
fx = function(x) x * 2
batchMap(fun = fx, x = 1:6)
submitJobs(); waitForJobs()
reduceResultsList()
removeRegistry()

Lang et al, (2017), batchtools: Tools for R to work on batch systems, Journal of Open Source Software, 2(10), 135. and

https://cran.r-project.org/package=batchtools

https://doi.org/10.21105/joss.00135
https://cran.r-project.org/package=batchtools

Understanding {batchtools} basics

1. makeRegistry() creates a folder on a
shared disk

2. batchMap() writes jobs to that folder

3. submitJobs() submits the jobs and
waitForJobs() waits for them to complete

4. reduceResultsList() loads the results
from disk into a list

5. removeRegistry() deletes the folder

BBS go fastR Course52

library(batchtools)
makeRegistry(file.dir=NA)
fx = function(x) x * 2
batchMap(fun = fx, x = 1:6)
submitJobs(); waitForJobs()
reduceResultsList()
removeRegistry()

Lang et al, (2017), batchtools: Tools for R to work on batch systems, Journal of Open Source Software, 2(10), 135. and

https://cran.r-project.org/package=batchtools

https://doi.org/10.21105/joss.00135
https://cran.r-project.org/package=batchtools

Why is {clustermq} so much faster?

BBS go fastR Course53

Michael Schubert, clustermq enables efficient parallelization of genomic analyses, Bioinformatics,

Volume 35, Issue 21, 1 November 2019, Pages 4493–4495 and https://cran.r-project.org/package=clustermq

▪ {batchtools} saves job & results files

to network-shared storage (slow!)

– {clustermq} does not, and has load

balancing over persistent workers

➢ Much lower overhead!

▪ There is a tradeoff between speed

and stability:

▪ {batchtools} allows to restart specific

jobs that crashed (e.g., due to memory

constraints) – {clustermq} would not

return any results / require a re-run. Figure: https://mschubert.github.io/clustermq/

https://doi.org/10.1093/bioinformatics/btz284
https://doi.org/10.1093/bioinformatics/btz284
https://cran.r-project.org/package=clustermq
https://cran.r-project.org/package=batchtools
https://cran.r-project.org/package=clustermq
https://mschubert.github.io/clustermq/

Configuration file locations & resource settings

Default configuration file locations:

▪ {batchtools}: location determined by batchtools::findConfFile()

▪ {clustermq}: location defined by R option: getOption("clustermq.template")

These files set the job parameters for the cluster scheduler, e.g., resources:

BBS go fastR Course54

Resource {clustermq} {batchtools} Our defaults

Cores cores: # ncpus: # 1 core

Wall time walltime: minutes walltime: seconds 1 hour

Memory memory: megabytes memory: megabytes 1 GB

https://mllg.github.io/batchtools/reference/findConfFile.html
https://cran.r-project.org/web/packages/clustermq/vignettes/userguide.html#options

Setting specific resource requirements for
{batchtools} and {clustermq}:

→Unless you know better, parallelize the outermost loop, and use 1 core per job.

▪ A subtlety with {clustermq} is to set a per-clustermq job timeout (on top of the

walltime of the R session for the cluster job scheduler; in seconds).

– If you don’t set this, {clustermq} in the main R session may hang forever if an R

worker crashes*! * Unless you run 0.9.1+ and compile from source with the right flag:

Sys.setenv(CLUSTERMQ_USE_SYSTEM_LIBZMQ=0); install.packages('clustermq', type='source’);

BBS go fastR Course55

Q(..., n_jobs = N,
 timeout = 180,
 template = list(
 walltime = 60,
 memory = 3072,
 cores = 1
))

submitJobs(...,
 resources = list(
 walltime = 3600,
 memory = 3072,
 ncpus = 1,
 max.concurrent.jobs = N
))

https://mschubert.github.io/clustermq/articles/userguide.html#environments
https://mllg.github.io/batchtools/reference/submitJobs#resources

Parallelization workflow

1. Optimize your code locally

2. Run the code through clustermq (or batchtools), but using the local backend

rather than on the cluster.

→ This allows you to locally debug (e.g., using browser())

3. Run a small (2-5 replications) test on the cluster

– Errors commonly occur here because local debugging uses the same interactive R

session (with the same loaded packages, etc.), whereas cluster R jobs will not.

4. Once all of this works, run your full workload

BBS go fastR Course56

Part III

Case studies & best practices

Oncology phase I dose escalation: a delicate
balance between sub-therapeutic & toxic dosing

▪ Volunteers are “patients ... whose cancers progressed despite standard treatments”1

– Initially: limited knowledge on toxicity: phase I trial to determine safety of new drug.

– Need to limit risk to current and future patients2 ⇒ can initially only use small cohorts.

▪ Goal: systematically increase the dose as quickly & safely as possible to determine the

safe dose range for further study.

BBS go fastR Course

1. Le Tourneau, C. et al. Dose escalation methods in phase I cancer clinical trials. J. Natl. Cancer Inst. 101, 708–720 (2009).

2. Babb, J et al. Cancer phase I clinical trials: Efficient dose escalation with overdose control. Stat. Med. 17, 1103–1120 (1998).

58

P subtherpeutic dosing

Lack of efficacy leads to death

P DLT

Serious side effects / toxicity

Dose0

Target

range

Update
Bayesian

model (prior,
historical +
trial data)

using
{OncoBayes2}

Determine
safe set of
pre-defined
dose levels

Sample a
cohort of

patients (3-6)
for chosen
dose level

Observe DLT
events for

cohort

BBS go fastR Course

Oncology phase I Bayesian
adaptive dose escalation

Model-based escalation with small

sample sizes ⇒ busy design stage:

▪ Need to assess short- and long-term

operating characteristics through

simulation – lots of it:

– Many different trajectories possible:

Cohort sizes & events are sampled

from different possible scenarios

– Originally, this needed days of

compute time!

59

Safe

dose

range

BBS go fastR Course60

Making the submission workload fast

Parallelisation on single node Multi-day runtime for ~10000 simulations2019

Rewrite using {batchtools} to run on HPC

1-2 hours on ~300-600 cores
Optimize {OncoBayes2}:

Merge data, skip data with 0 patients,

drop normalization of binomial
< 1 hour on ~300-600 cores

2020

2021
Compute time dominated by aggregating

results on head-node (uses only 1 core!) Rewrite using {clusterMQ},

construct results on workers and bind at

the end, run individual replicates single-

threaded (remove forking overhead)
2022 1-2 minutes on ~200 cores

~ 50x faster

~ 2x faster

~ 30x faster ~ 3000x faster

~ 200x efficiency

Typical parallel workloads follow a pattern

▪ Simulation studies under replication, bootstrapping and cross validation

workloads all follow a similar pattern of computation:

BBS go fastR Course61

Step Simulation study Bootstrapping Cross validation

1. Preparation Definition of ground truth

«scenarios»

Prepare data Partition data into cross

validation folds

2. Parallel computation Simulate (independent)

trials

Resample data & perform

analysis (independent of

other resampled datasets)

Perform analysis on training

folds, evaluate on validation

fold (independent of other

training/validation splits)

3. Results aggregation Compute metrics, e.g., trial

operating characteristics

Compute metrics

(e.g., confidence intervals)

across bootstraps

Compute performance

across data splits

Typical parallel workloads follow a pattern

▪ Simulation studies under replication, bootstrapping and cross validation

workloads all follow a similar pattern of computation:

BBS go fastR Course62

Step Simulation study Bootstrapping Cross validation

1. Preparation Definition of ground truth

«scenarios»

Prepare data Partition data into cross

validation folds

2. Parallel computation Simulate (independent)

trials

Resample data & perform

analysis (independent of

other resampled datasets)

Perform analysis on training

folds, evaluate on validation

fold (independent of other

training/validation splits)

3. Results aggregation Compute metrics, e.g., trial

operating characteristics

Compute metrics

(e.g., confidence intervals)

across bootstraps

Compute performance

across data splits

Main R session (e.g., RStudio IDE)

R workers (e.g., via HPC jobs)

Compute metrics on R workers,

aggregate results in main R session

Dragons await: R workers need to be set up so
they execute work as the main R session would

In particular, library locations, loaded libraries and options set in the main R

session must also be set on the R workers on startup:

▪ If library locations are set by .libPaths(), this should be done consistently!

▪ R Packages loaded with library() or require() must also be loaded on the

R workers, not just in the main R session!

▪ When specifying options() such as the number of digits to display, etc.,

again, this must also be done on the R workers on startup, otherwise there will

be inconsistencies with the main R session!

Remember this when locally debugging jobs in the main R session!

BBS go fastR Course63

https://stat.ethz.ch/R-manual/R-devel/library/base/html/libPaths.html
https://stat.ethz.ch/R-manual/R-devel/library/base/html/library.html
https://stat.ethz.ch/R-manual/R-devel/library/base/html/options.html

Random numbers for parallel R jobs –

▪ Each parallel job will need a pseudorandom number generator (PRNG).

▪ Can I just set.seed(i) for 𝑖 = 0,1, … , 𝑁 − 1 in each of my parallel R jobs?

– No!

BBS go fastR Course64

Why?

The first two jobs will use the same «random» numbers (except for one)!

→ Adjacent seeds do not guarantee uncorrelated PRNG streams

how not to do it

Random numbers for parallel R jobs –
a better way

1. Set the seed once in the main job via set.seed

2. Derive uncorrelated random number streams that are

guaranteed to not overlap for each parallel job

– E.g., L'Ecuyer’s Random Number Generator (RNG) in the

parallel package is designed for this.

Each ‘stream’ is a subsequence of the period of length 2127

by construction! R example for s1 and s2 below:

BBS go fastR Course65

Problem: Solution:

For an overview of best practices (ADEMP) and common pitfalls, see

Morris et al (2019). Using simulation studies to evaluate statistical methods. SIM, 38(11), 2074–2102.

library(parallel)
RNGkind("L'Ecuyer-CMRG")
set.seed(384634)
s1 <- nextRNGStream(.Random.seed)
s2 <- nextRNGStream(s1)

RNGkind("L'Ecuyer-CMRG")
.Random.seed <<- s1

RNGkind("L'Ecuyer-CMRG")
.Random.seed <<- s2

Job 1

Job 2

Uncontrolled

parallel runs

Stream

parallel runs

https://stat.ethz.ch/R-manual/R-patched/library/parallel/html/RngStream.html
https://doi.org/10.1002/sim.8086
https://doi.org/10.1002/sim.8086

We provide some template code with
“batteries included”, in particular:

▪ .libPaths() and options() will be transferred from the main R session to

the R workers

▪ They also load all the packages in load_packages.R consistently both in the

main R session and on the R workers on the HPC (only once per HPC job on

worker startup, not for each {clustermq} job).

▪ The R pseudorandom number generator is set up to generate uncorrelated

random numbers between clustermq jobs.

▪ Options are provided to first locally test and debug single jobs before firing off a

lot of jobs to the cluster

BBS go fastR Course66

Template for more complex workloads

Template structure:

main.R: Main file, defines what to run and how many replications / bootstraps

cluster_engine.R:

▪ Provides infrastructure to aggregate results fast (also into a data frame)

▪ Wraps clustermq to provide additional features (next slide)

load_packages.R: Defines which packages to load (and .libPaths if needed)

simulate_trial.R / bootstrap.R / cv.R: Code for actual workload

BBS go fastR Course67

Debugging remote R jobs

▪ If a remote job fails, the templates

provide a call stack on top of the clustermq

error to help you locate the issue:

▪ The run_batch function in cluster_engine.R supplies two arguments to

assist in debugging by running an offending job locally instead (so you can

e.g., use browser() and investigate):

– test_single_job_index = c(11,12)
→ Use this to test single jobs (e.g. if job_id 11 and 12 crashes, set this to c(11,12))

– test_single_job_per_experiment = FALSE
→ Use TRUE to test 1 replication per experiment

BBS go fastR Course68

https://gitlabce.apps.dit-prdocp.novartis.net/AEA/r-hpce-templates/-/blob/main/clustermq-replication-study/cluster_engine.R

Your own case study
<URL>

Let us know if you have questions or
need help!

You can also try the example codes in case you don’t have a case study with you.

Available in the fastR-example-code folder of your home-directory

Discussion / Presentation
of Case Studies

What if my workload does not parallelize?

E.g., we wrote our own custom MCMC sampler in R, and it is just too slow even

though we already optimized the R code as far as we could. Now what?

Since this is typically* a sequential workload, doing this directly in R might just be too

slow. → Calling C++ code from R is not too difficult: check out {Rcpp} and {inline}!

Some other helpful packages when dealing with C++ code in R:

▪ {RcppArmadillo} and {RcppEigen} for linear algebra,

▪ {RcppParallel} and {RcppThread} for parallelization in C++

* Stan and {brms} can do within-chain-parallelization, see the relevant {brms} vignette

BBS go fastR Course71

https://cran.r-project.org/package=Rcpp
https://cran.r-project.org/package=inline
https://cran.r-project.org/package=RcppArmadillo
https://cran.r-project.org/package=RcppEigen
https://cran.r-project.org/package=RcppParallel
https://cran.r-project.org/package=RcppThread
https://cran.r-project.org/web/packages/brms/vignettes/brms_threading.html

If you need to build an entire high-performance
data and/or simulation pipeline: {targets}

Beyond the scope of this introductory course – check out the {targets} package,

Will Landau’s excellent R/Pharma 2023 workshop and related packages:

▪ {nanonext}: implements the NNG protocol (successor to zeroMQ)

▪ {mirai}: runs work asynchronously via {nanonext}

▪ {crew} (and {crew.cluster}): distributed launcher (for compute clusters) using

{mirai}, backend for {targets}

▪ {targets} can be used to build entire data / simulation pipelines

(If you are a Linux/Unix person, think “make” for R)

▪ {tarchetypes} makes defining common {targets} pipelines easier

▪ {gittargets}, {jagstargets}, ...

BBS go fastR Course72

https://wlandau.github.io/rpharma2023/
https://cran.r-project.org/package=nanonext
https://cran.r-project.org/package=mirai
https://cran.r-project.org/package=nanonext
https://cran.r-project.org/package=crew
https://cran.r-project.org/package=crew.cluster
https://cran.r-project.org/package=mirai
https://cran.r-project.org/package=targets
https://cran.r-project.org/package=targets
https://cran.r-project.org/package=tarchetypes
https://cran.r-project.org/package=targets
https://cran.r-project.org/package=gittargets
https://cran.r-project.org/package=jagstargets

Summary of resources & further reading

All course material (including these slides) is available online:

https://luwidmer.github.io/fastR-website/

Key papers:
▪ Morris et al (2019). Using simulation studies to evaluate statistical methods. SIM.

▪ Schubert (2019), clustermq enables efficient parallelization of genomic analyses, Bioinformatics.

▪ Lang et al (2017), batchtools: Tools for R to work on batch systems, JOSS.

 Further example for use of {clustermq}

BBS go fastR Course73

https://luwidmer.github.io/fastR-website/
https://doi.org/10.1002/sim.8086
https://doi.org/10.1093/bioinformatics/btz284
https://doi.org/10.21105/joss.00135
https://michaelmayer.quarto.pub/clustermq/example.html

Thank you for participating!

Please take 5 minutes to fill out a brief feedback survey about this seminar.

Thank you for joining today and for sharing your thoughts!

<Feedback Form Link>

Feel free to reach out to us if you have additional questions or suggestions:

lukas_andreas.widmer@novartis.com

michael.mayer@posit.co

BBS go fastR Course74

mailto:lukas_andreas.widmer@novartis.com
mailto:michael.mayer@posit.co
mailto:lukas_andreas.widmer@novartis.com
mailto:michael.mayer@posit.co

	Default Section
	Slide 1: Go fastR – how to make R code fast(er) and run it on high performance compute (HPC) clusters Lukas A. Widmer, Novartis Pharma AG Michael Mayer, Posit PBC

	Summary Section
	Slide 2: Who we are
	Slide 3: Some housekeeping before we start
	Slide 4: Learning goals
	Slide 5: Access the high-performance compute environment at <URL>

	Local R debugging & optimization
	Slide 6: Part I Debugging R code and identifying & optimizing bottlenecks locally
	Slide 7: Before we start: do not sacrifice correctness in the name of performance
	Slide 8: My R code is not behaving as expected... how to find the problem?
	Slide 9: Helpful commands for debugging: browser() interactive debugger
	Slide 10: Helpful commands for debugging: traceback(), rlang::last_error() and rlang::last_trace()
	Slide 11: Helpful commands for debugging: options(error = recover)
	Slide 12: Advanced Debugging: R Markdown
	Slide 13: Advanced Debugging: R Markdown
	Slide 14: Advanced Debugging: Remote Sessions
	Slide 15: Questions on debugging?
	Slide 16: My R code is slow... what can I do?
	Slide 17: Which parts of the code are slow?
	Slide 18: Which parts of the code are slow?
	Slide 19: I have found a bottleneck... what now? 1. Check for existing solutions
	Slide 20: I have found a bottleneck... what now? 2. Do as little as possible...
	Slide 21: I have found a bottleneck... what now? 3. Vectorize
	Slide 22: Example: vectorize for loop
	Slide 23: How much memory am I using?
	Slide 24: Avoid making object copies if possible
	Slide 25: Demo: 5k bootstraps on 1k patients*
	Slide 26: Demo: 5k bootstraps on 1k patients
	Slide 27: Demo: 5k bootstraps on 1k patients
	Slide 28: Demo: 5k bootstraps on 1k patients
	Slide 29: Demo: 5k bootstraps on 1k patients
	Slide 30: Demo: 5k bootstraps on 1k patients
	Slide 31: Questions on optimization?
	Slide 32: I know which part of my code is slow and cannot make it faster... what now?
	Slide 33: Amdahl’s Law

	R parallelization on HPCE
	Slide 34: Part II R parallelization on high performance computing environments (HPC)
	Slide 35: R parallelization on the HPC: Background information
	Slide 36: Rstudio in the cloud – overview
	Slide 37: Rstudio in the cloud – getting access
	Slide 38: Storage locations
	Slide 39: HPC – Schedulers
	Slide 40: HPC – Fair use
	Slide 41: Things to consider when using HPC
	Slide 42: The {clusterMQ} and {batchtools} R packages can submit to different backends
	Slide 43: Parallelizing with {clusterMQ} locally
	Slide 44: Parallelizing with {clusterMQ} and {batchtools} on a laptop vs HPC cluster
	Slide 45: The {clustermq} and {batchtools} R packages submit HPC jobs for you
	Slide 46: Understanding {clustermq} basics:
	Slide 47: Understanding {clustermq} basics:
	Slide 48: The {clustermq} and {batchtools} R packages submit batch jobs for you
	Slide 49: Understanding {batchtools} basics
	Slide 50: Understanding {batchtools} basics
	Slide 51: Understanding {batchtools} basics
	Slide 52: Understanding {batchtools} basics
	Slide 53: Why is {clustermq} so much faster?
	Slide 54: Configuration file locations & resource settings
	Slide 55: Setting specific resource requirements for {batchtools} and {clustermq}:
	Slide 56: Parallelization workflow
	Slide 57: Part III Case studies & best practices
	Slide 58: Oncology phase I dose escalation: a delicate balance between sub-therapeutic & toxic dosing
	Slide 59: Oncology phase I Bayesian adaptive dose escalation
	Slide 60: Making the submission workload fast
	Slide 61: Typical parallel workloads follow a pattern
	Slide 62: Typical parallel workloads follow a pattern
	Slide 63: Dragons await: R workers need to be set up so they execute work as the main R session would
	Slide 64: Random numbers for parallel R jobs –
	Slide 65: Random numbers for parallel R jobs – a better way
	Slide 66: We provide some template code with “batteries included”, in particular:
	Slide 67: Template for more complex workloads
	Slide 68: Debugging remote R jobs
	Slide 69: Your own case study <URL> Let us know if you have questions or need help!
	Slide 70: Discussion / Presentation of Case Studies

	Further resources
	Slide 71: What if my workload does not parallelize?
	Slide 72: If you need to build an entire high-performance data and/or simulation pipeline: {targets}
	Slide 73: Summary of resources & further reading
	Slide 74: Thank you for participating!

